Brainwaves - sbElectricity
Electric charge

Electric charge is the physical property of matter that causes it to experience a force when close to other electrically charged matter. There are two types of electric charges – positive and negative. Positively charged substances are repelled from other positively charged substances, but attracted to negatively charged substances; negatively charged substances are repelled from negative and attracted to positive. An object will be negatively charged if it has an excess of electrons, and will otherwise be positively charged or uncharged. The electric charge is a fundamental conserved property of some subatomic particles, which determines their electromagnetic interaction. Electrically charged matter is influenced by, and produces, electromagnetic fields. The interaction between a moving charge and an electromagnetic field is the source of the electromagnetic force, which is one of the four fundamental forces.


As reported by the ancient Greek philosopher Thales of Miletus around 600 BC, charge (or electricity) could be accumulated by rubbing fur on various substances, such as amber. The Greeks noted that the charged amber buttons could attract light objects such as hair. They also noted that if they rubbed the amber for long enough, they could even get an electric spark to jump. This property derives from the triboelectric effect.

In 1600, the English scientist William Gilbert coined the New Latin word electricus from ηλεκτρον (elektron), the Greek word for “amber”, which soon gave rise to the English words “electric” and “electricity.” He was followed in 1660 by Otto von Guericke, who invented [an] electrostatic generator.

In 1839, Michael Faraday showed that the division between static electricity, current electricity, and bioelectricity was incorrect, and all were a consequence of the behavior of a single kind of electricity appearing in opposite polarities. It is arbitrary which polarity is called positive and which is called negative. Positive charge can be defined as the charge left on a glass rod after being rubbed with silk.

One of the foremost experts on electricity in the 18th century was Benjamin Franklin, who argued in favour of a one-fluid theory of electricity. Franklin imagined electricity as being a type of invisible fluid present in all matter; for example, he believed that it was the glass in a Leyden jar that held the accumulated charge. He posited that rubbing insulating surfaces together caused this fluid to change location, and that a flow of this fluid constitutes an electric current. He also posited that when matter contained too little of the fluid it was “negatively” charged, and when it had an excess it was “positively” charged.

Static electricity and electric current

Static electricity and electric current are two separate phenomena, both involving electric charge, and may occur simultaneously in the same object. Static electricity is a reference to the electric charge of an object and the related electrostatic discharge when two objects are brought together that are not at equilibrium. An electrostatic discharge creates a change in the charge of each of the two objects. In contrast, electric current is the flow of electric charge through an object, which produces no net loss or gain of electric charge.

Electrification by friction

Let a piece of glass and a piece of resin, neither of which exhibiting any electrical properties, be rubbed together and left with the rubbed surfaces in contact. They will still exhibit no electrical properties. Let them be separated. They will now attract each other.

If a second piece of glass be rubbed with a second piece of resin, and if the piece be then separated and suspended in the neighbourhood of the former pieces of glass and resin, it may be observed:

  1. that the two pieces of glass repel each other;
  2. that each piece of glass attracts each piece of resin;
  3. that the two pieces of resin repel each other.

These phenomena of attraction and repulsion are called electrical phenomena, and the bodies that exhibit them are said to be ‘electrified’, or to be ‘charged with electricity’.

Bodies may be electrified in many other ways, as well as by friction.

The electrical properties of the two pieces of glass are similar to each other but opposite to those of the two pieces of resin: The glass attracts what the resin repels and repels what the resin attracts.

If a body electrified in any manner whatsoever behaves as the glass does, that is, if it repels the glass and attracts the resin, the body is said to be ‘vitreously’ electrified, and if it attracts the glass and repels the resin it is said to be ‘resinously’ electrified. All electrified bodies are found to be either vitreously or resinously electrified.

It is the established convention of the scientific community to define the vitreous electrification as positive, and the resinous electrification as negative. The exactly opposite properties of the two kinds of electrification justify our indicating them by opposite signs, but the application of the positive sign to one rather than to the other kind must be considered as a matter of arbitrary convention, just as it is a matter of convention in mathematical diagram to reckon positive distances towards the right hand.

No force, either of attraction or of repulsion, can be observed between an electrified body and a body not electrified.

Actually, all bodies are electrified, but may appear not to be so by the relative similar charge of neighboring objects in the environment. An object further electrified + or – creates an equivalent or opposite charge by default in neighboring objects, until those charges can equalize. The effects of attraction can be observed in high-voltage experiments, while lower voltage effects are merely weaker and therefore less obvious. The attraction and repulsion forces are codified by Coulomb’s Law (attraction falls off at the square of the distance, which has a corollary for acceleration in a gravitational field, suggesting that gravitation may be merely electrostatic phenomenon between relatively weak charges in terms of scale). See also the Casimir effect.

It is now known that the Franklin/Watson model was fundamentally correct. There is only one kind of electrical charge, and only one variable is required to keep track of the amount of charge. On the other hand, just knowing the charge is not a complete description of the situation. Matter is composed of several kinds of electrically charged particles, and these particles have many properties, not just charge.

The most common charge carriers are the positively charged proton and the negatively charged electron. The movement of any of these charged particles constitutes an electric current. In many situations, it suffices to speak of the conventional current without regard to whether it is carried by positive charges moving in the direction of the conventional current and/or by negative charges moving in the opposite direction. This macroscopic viewpoint is an approximation that simplifies electromagnetic concepts and calculations.

At the opposite extreme, if one looks at the microscopic situation, one sees there are many ways of carrying an electric current, including: a flow of electrons; a flow of electron “holes” that act like positive particles; and both negative and positive particles (ions or other charged particles) flowing in opposite directions in an electrolytic solution or a plasma.

Beware that, in the common and important case of metallic wires, the direction of the conventional current is opposite to the drift velocity of the actual charge carriers, i.e., the electrons. This is a source of confusion for beginners.


Aside from the properties described in articles about electromagnetism, charge is a relativistic invariant. This means that any particle that has charge Q, no matter how fast it goes, always has charge Q.

Conservation of electric charge

The total electric charge of an isolated system remains constant regardless of changes within the system itself. This law is inherent to all processes known to physics and can be derived in a local form from gauge invariance of the wave function. The conservation of charge results in the charge-current continuity equation.

Source: https://en.wikipedia.org/wiki/Electric_charge


Tagged: , , , ,

Leave a comment!

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: